Role of membrane ion transport proteins in cerebral ischemic damage.

نویسندگان

  • Douglas B Kintner
  • Yanping Wang
  • Dandan Sun
چکیده

Loss of ion homeostasis plays a central role in pathogenesis of ischemic cell damage. Ischemia-induced perturbation of ion homeostasis leads to intracellular accumulation of Ca2+ and Na+ and subsequent activation of proteases, phospholipases, and formation of oxygen and nitrogen free radicals. This signal transduction cascade results in long-term functional and structural changes in membrane and cytoskeletal integrity and eventual cell death. Both ion conductances and ion transporters could affect ion homeostasis. Considerable research effort has been centered on roles of passive fluxes via cation and anion conductances in cerebral ischemic damage. This review will instead focus on the recent studies into the role of secondary active transport proteins in ischemia-induced dissipation of ion homeostasis. Secondary active ion transport proteins are a membrane protein-mediated solute transport mechanism that derives its energy from the combined chemical gradients of the transported ions. They are important in maintaining steady-state intracellular ion concentrations. These include Na+-dependent chloride transport (NKCC), Na+/H+ exchange (NHE), and Na+/Ca2+ exchange (NCX). Results from both in vitro and in vivo experimental studies suggest that these ion transport proteins are potential targets to reduce or prevent ischemia-mediated loss of ion homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor

Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...

متن کامل

Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport.

The brain achieves homeostasis of its intracellular and extracellular fluids by precisely regulating the transport of solute and water across its major cellular barriers: endothelia of the blood-brain barrier (BBB), choroid plexus epithelia, and neuroglial cell membranes. Cerebral edema, the pathological accumulation of fluid in the brain's intracellular and extracellular spaces, is a major cau...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2007